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We consider the modified Ising model introduced by de Oliveira, Mendes, and Santos �J. Phys. A 26, 2317
�1993��, where the temperature depends locally on the spin configuration and detailed balance and local
equilibrium are not obeyed. We derive a relation between the linear response function and correlation functions
that generalizes the fluctuation-dissipation theorem. In the stationary states of the model, which are the coun-
terparts of the Ising equilibrium states, the fluctuation-dissipation theorem breaks down due to the lack of time
reversal invariance. In the nonstationary phase-ordering kinetics, the parametric plot of the integrated response
function ��t , tw� vs the autocorrelation function is different from that of the kinetic Ising model. However,
splitting ��t , tw� into a stationary and an aging term ��t , tw�=�st�t− tw�+�ag�t , tw�, we find �ag�t , tw�
� tw

−a�f�t / tw�, and a numerical value of a� consistent with a�= 1
4 , as in the kinetic Ising model.
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I. INTRODUCTION

In equilibrium systems the integrated response function
��t , tw� and the autocorrelation function C�t , tw� depend only
on the two-time difference �= t− tw and are related by the
fluctuation-dissipation theorem �FDT� �1�

���� = �̂�C� , �1�

where

�̂�C� = ��C�0� − C���� �2�

and �=−d�̂�C� /dC is the inverse equilibrium temperature.
In recent times, many studies have considered the possi-

bility to relate response and correlation functions in nonequi-
librium systems. In aging systems, such as glassy materials
and coarsening systems, relaxation properties depend both
on tw and t and FDT breaks down. In this context, guided by
the solution of mean field spin glass models, Cugliandolo
and Kurchan �2� proposed that, despite the explicit two-time
dependence of � and C, a relation analogous to Eq. �1�,
namely,

��t,tw� = �̂�C� , �3�

may still hold for a large class of systems in the large tw
limit. The functional form of �̂�C�, however, is different
from the equilibrium one �2� and system dependent. In par-
ticular, it was shown �3� that �̂�C� is related to basic proper-
ties of the equilibrium states; because of that, aging systems
can be classified �4� into few classes according to the shape
of �̂�C�. Phase ordering systems are characterized by a bro-
ken line shape of �̂�C�. More precisely, for C larger than the
Edwards-Anderson order parameter qEA, FDT �2� still holds.
For C�qEA one has a horizontal line, namely, a constant

integrated response function. In analogy to equilibrium sys-
tems, the quantity −d�̂�C� /dC can be interpreted �5� as an
effective inverse temperature �eff�C� of the nonequilibrium
state. In coarsening systems this quantity takes two values,
the temperature of the reservoir �eff�C�=�, in the region C
�qEA, and �eff�C�=0, for C�qEA. The feature �eff�C�=� in
the region of the largest values of C�t , tw� is quite general in
systems where local equilibrium �6� is obeyed. Local equi-
librium, in fact, implies that on short time scales FDT holds.
Since small time separations correspond to the largest values
of C�t , tw�, in this regime one has �eff�C�=�. The situation is
different in systems where local equilibrium is not obeyed. In
this case, one does not expect to observe FDT even in the
short time-scale regime and the definition of a thermody-
namic temperature from �̂�C� may be incorrect.

In this paper we study the fluctuation-dissipation relation
in a two-dimensional Ising model without detailed balance
�IWDB�, originally introduced in Ref. �7�, for which local
equilibrium does not hold. This spin system is analogous to
the kinetic Ising model �KIM�, but the temperature entering
the transition rates depends on space and time through the
system configuration. This model is known to behave much
like the KIM. In the phase diagram, a disordered high-
temperature phase and a low-temperature phase with ergod-
icity breaking are separated by a critical line. The phase tran-
sition is characterized by the same critical exponents �7� of
the Ising model. After a quench into the low-temperature
phase, the nonstationary dynamics is analogous �8� to phase
ordering in the KIM.

Despite these strong similarities, lack of detailed balance
makes the IWDB, in principle, much different from the KIM
and gives rise to interesting features that can be enlightened
by the fluctuation-dissipation relation. In the KIM, stationary
states are equilibrium states characterized by time reversal
invariance �TRI�. Instead, in the stationary states of the
IWDB, which are the counterparts of the KIM equilibrium
states, TRI is violated and FDT �2� breaks down. The rela-
tion between ��t , tw� and C�t , tw� may not be meaningful, as
in systems with detailed balance, and −d�̂�C� /dC cannot be
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straightforwardly interpreted as a thermodynamic tempera-
ture. Interestingly, however, we can derive fluctuation-
dissipation relations that generalize to the present model
what is known in systems where detailed balance holds. In
doing that, we uncover that the response function is not natu-
rally related to the spin autocorrelation function C�t , tw�
= ��i�t��i�tw��, but rather to the quantity A�t , tw�
= ��i�t��i�tw��i�tw��, �i�tw� being the space-time-dependent
inverse temperature. In stationary states, the fluctuation-
dissipation relation reads

���� = A�0� − A��� − ���� , �4�

where ���� is a quantity related to the lack of TRI, analogous
to the asymmetry �9� in systems with detailed balance out of
equilibrium. In the special case when the temperature is con-
stant, �i�t�=�, the model reduces to the KIM. Since now
TRI is recovered, one has ����=0 and then

���� = A�0� − A��� . �5�

Recalling that in this case A���=�C��� one recognizes the
FDT, Eqs. �1� and �2�. In the case with nonconstant tempera-
ture, since A�t , tw���C�t , tw� both in stationary and nonsta-
tionary states, the relation between ��t , tw� and C�t , tw� re-
mains unclear.

In the phase-ordering process following a temperature
quench, two-time quantities can be split into a stationary and
an aging term. In particular, for the integrated response func-
tion one has ��t , tw�=�st�t− tw�+�ag�t , tw�, where the aging
part obeys the scaling form

�ag�t,tw� = tw
−a�f�y� , �6�

with y= t / tw, as generally expected �11� in phase-ordering
systems. When detailed balance holds, the exponent a� is
uniquely determined by the space dimensionality d and the
dynamic exponent z. Since in the IWDB the value of z is the
same �8� of the KIM, one expects the same value of a� in the
two models. In fact, in d=2 we find results consistent with
a�= 1

4 , as in the KIM. This result complements those of Refs.
�7,8�, where it was found that the equilibrium critical expo-
nents and the nonequilibrium persistence exponent of the
IWDB were the same, within statistical errors, of those of the
Ising model. The numeric results of this paper, therefore,
strengthen the idea that the two models belong to the same
nonequilibrium universality class.

Despite this, the parametric plot of �̂�C� is different from
that of the KIM. Interestingly, the shape of this function is
similar to that found �10� in a soluble model of sheared bi-
nary systems where detailed balance is also violated, but
local equilibrium still holds. In particular, the extrapolation
of the numerical data to the large tw limit is consistent with
the horizontal line typical of phase ordering in the region of
small C of the plot.

This paper is organized as follows: In Sec. II, we intro-
duce the model. In Sec. III, we derive a relation between the
response function and correlation functions that generalizes
the FDT to the present model. This relation allows one to
compute, numerically, the response function without apply-
ing a perturbation and to discuss the fluctuation-dissipation

relation in Sec. IV. In particular, the stationary states at high
and low temperature are discussed in Secs. IV A 1 and
IV A 2, while the aging dynamics following a quench is con-
sidered in Sec. IV B. A summary and the conclusions are
drawn in Sec. V.

II. THE MODEL

We consider the Ising model defined by the Hamiltonian

H��� = − J�
�ij�

�i� j = − �
i

�iHi��� , �7�

where �i= ±1 is a spin variable on a d-dimensional lattice
and �ij� denotes nearest neighbors i , j sites. Hi���=J� ji

� ji
,

where ji runs over the nearest neighbors of i, is the local
field.

A dynamics is introduced by randomly choosing a single
spin on site i and updating it in an elementary time step with
a transition rate w����→ �����. Here, ��� and ���� are the
spin configurations before and after the move, which differ
only by the value of �i. In the IWDB, transition rates are
generic but their ratio must fulfill the condition

w���� → �����
w����� → ����

= exp	− �
i

�i�����iHi��� − �i�Hi�����
 .

�8�

With a constant �i���=�, one recovers the kinetic Ising
model �KIM� in contact with a reservoir at the temperature
T=�−1. In this case, Eq. �8� is the detailed balance condition
with respect to the Hamiltonian �7�. In fact, one has

− �
i

���iHi��� − �i�Hi����� = ��H��� − H����� �9�

and, hence,

w���� → �����
w����� → ����

=
exp�− �H�����
exp�− �H����

=
Peq����
Peq���

, �10�

where

Peq��� 	 exp�− �H���� �11�

is the canonical equilibrium probability. Detailed balance im-
plies that stationary states of the model are also equilibrium
states with measure �11�, which are characterized by TRI.
For a generic two-time quantity F�t , tw�, TRI implies
F�t , tw�=F�−t ,−tw�. If TTI is also obeyed, namely, F�t , tw�
=F�t− tw�, by shifting time by an amount tw, one also has
F�t , tw�=F�t− tw�.

In this paper, we consider the case when �i��� is not
constant but depends on the configuration through the local
field Hi���, �i���=��Hi����. Physically, one can imagine a
system in contact with reservoirs at different temperatures
each of which couples to the spins �i with the same local
field Hi���. Note that flipping �i does not change Hi���;
hence, �i���=�i����. However, this is true only for the site i
where the flip occurs, while, in general, � j����� j���� for
j� i. The very basic feature that makes this model different
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from the KIM is the fact that its transition rates do not obey
detailed balance. This is expected on physical grounds, since
different local temperatures in the system determine heat
fluxes that break TRI and, hence, detailed balance.
Mathematically, this happens because the argument of the
exponential in Eq. �8� cannot be written as a difference
H����−H���, H being a generic function, as in Eq. �9�, due
to the factor �i���. Indeed, the term �i�i����iHi��� is a
function H��� of the configuration ��� but the term
�i�i����i�Hi�����H���� because it depends on both the
configurations ��� and ����. Because detailed balance is not
obeyed, the stationary states of the model �8� are not equi-
librium states and, in principle, TRI is not expected.

As discussed in �7,8,13�, the present model contains, as
special cases corresponding to particular choices of ��Hi�,
the Voter, majority Voter, and noisy Voter model, besides,
clearly, the KIM.

III. FLUCTUATION-DISSIPATION RELATIONS

In this section we derive a relation between the response
function and particular correlation functions that generalize
the result of Ref. �14� to the case of a nonconstant �i���. The
derivation closely follows that of Ref. �14� to which we refer
for further details.

Let us consider a perturbing magnetic field switched on
the jth site in the time interval �t� , t�+�t�,

hi�t� = h
i,j��t − t����t� + �t − t� , �12�

where � is the Heaviside step function. The Hamiltonian �7�
is changed to

H��� = − J�
�ij�

�i� j − �
i

hi�t��i = − �
i

�iHi
h��� , �13�

where Hi
h���=J� ji

� ji
+hi�t�. In the limit of vanishing h, the

effect of the perturbation �12� on the spin on site i at the time
t� t� is given by the linear response function �15,16�

Ri,j�t,t�� = lim
�t→0

1

�t
� ���i�t��

�hj�t��
�

h=0
, �14�

where here and in the following �¯� means ensemble aver-
ages, namely, taken over different initial conditions and ther-
mal histories. Introducing the probability p���� , t� to find the
system in the configuration ��� at time t, and the conditional
probability p���� , t  ���� , t�� to find the configuration ��� at
time t given that the system was in the configuration ���� at
t�, the right-hand side of Eq. �14� can be written as

� ���i�t��
�hj�t��

�
h=0

= �
���,����,����

�ip����,t����,t� + �t�

�� �ph�����,t� + �t����,t��
�hj

�
h=0

p�����,t�� . �15�

Here p and ph refer to the conditional probabilities of the
unperturbed and perturbed system, respectively. Let us con-
centrate on the factor containing ph. The conditional prob-
ability for �t sufficiently small is given by

ph�����,t� + �t����,t��

= 
����,���� + wh����� → ������t + O��t2� , �16�

where we have used the boundary condition

p�����,t����,t� = 
����,����.

Furthermore, also the perturbed transition rates wh must
verify the condition �8�, namely,

wh����� → �����
wh����� → �����

= exp	− �
i

�i������i�Hi
h���� − �i�Hi

h�����
 .

�17�

Expanding the perturbed transition rates in powers of h,
one finds that the following form:

wh����� → �����

= w����� → �����	1 −
1

2
� j������ j�hj − � j�hj�
 ,

�18�

where w�����→ ����� are generic unperturbed transition
rates obeying �8�, is compatible to first order in h with the
condition �17�.

Using Eqs. �16� and �18�, following Ref. �14�, the re-
sponse function can be written as the sum of two contribu-
tions

Ri,j�t,t�� = lim
�t→0

�Di,j�t,t�,�t� + D̄i,j�t,t�,�t�� , �19�

where

Di,j�t,t�,�t�

=
1

2 �
���,����

�ip����,t����,t� + �t�

� �
���������

w����� → ������ j������ j� − � j��p�����,t��

�20�

and

D̄i,j�t,t�,�t�

=
1

2 �
���,����,���������

�ip����,t����,t� + �t��� j� − � j��

�� j����w����� → �����p�����,t�� . �21�

Using the time translational invariance �TTI� of the condi-
tional probability p���� , t���� , t�+�t�= p���� , t−�t���� , t��,
one can write Di,j�t , t� ,�t� in the form of a correlation func-
tion

Di,j�t,t�,�t� = − 1
2 ��i�t − �t�Bj�t��� , �22�

where
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Bj = − �
����

�� j − � j��� j���w���� → ����� . �23�

Using Eq. �16�, D̄i,j�t , t� ,�t� can be written as

D̄i,j�t,t�,�t� =
1

2

�Ai,j�t,t��
�t

, �24�

where

�Ai,j�t,t�� = �� j�t���i�t��� j�t� + �t� − � j�t���� . �25�

Therefore, putting together Eqs. �22� and �24� and taking the
limit �t→0, we obtain

Ri,j�t,t�� =
1

2

�Ai,j�t,t��
�t�

−
1

2
��i�t�Bj�t��� , �26�

where

Ai,j�t,t�� = �� j�t���i�t�� j�t��� . �27�

In the following, we will be interested in the integrated
response function:

�i,j�t,tw� = �
tw

t

Ri,j�t,t��dt�, �28�

which corresponds to the application of a perturbing field
between the times tw and t. This quantity is easier to measure
because switching on the perturbation for a finite time in-
creases the signal to noise ratio. From Eq. �26�, we have

�i,j�t,tw� =
1

2
�Ai,j�t,t� − Ai,j�t,tw�� −

1

2
�

tw

t

��i�t�Bj�t��� .

�29�

Equations �26� and �29� are the principal results of this sec-
tion. They are relations between the response function and
correlation functions of the unperturbed kinetics, which gen-
eralize the FDT. These relations hold both in stationary and
nonstationary states and do not depend on the choice of the
unperturbed transition rates, provided the condition �8� is
obeyed.

From Eq. �29�, the integrated autoresponse function
��t , tw�=�i,i�t , tw�, which does not depend on i due to space
translation invariance, is given by

��t,tw� =
1

2
�A�t,t� − A�t,tw�� −

1

2
�

tw

t

��i�t�Bi�t��� , �30�

where A�t , tw�=Ai,i�t , tw�. We will use Eq. �30� for numerical
computations in Sec. IV. As discussed in �14�, this method to
compute ��t , tw� is much more efficient than traditional
methods where the perturbation is switched on.

In stationary states, a simplified expression for ��t , tw� can
be obtained that makes the role of TRI evident. In order to do
this, let us consider the integral

I�t,tw� =
1

2
�

tw

t

dt��Bi�t��i�t��� . �31�

Enforcing Eq. �23�, proceeding as in �14�, the integrand can
be written as

�Bi�t��i�t��� =
��� j�t�� j�t��i�t���

�t
. �32�

Using Eq. �32�, replacing d /dt with −d /dt�, due to TTI, and
carrying out the integration one has

I�t,tw� = 1
2 �A�t,t� − ��i�t��i�t��i�tw��� . �33�

Adding and subtracting I�t , tw� on the right-hand side, Eq.
�30� can be cast in the form �4�, with

���� =
1

2	��i�t��i�t��i�tw�� − ��i�tw��i�t��i�tw��

+ �
tw

t

dt����i�t�Bi�t��� − �Bi�t��i�t����
 . �34�

If TRI is also obeyed, as in equilibrium states, one has

��i�t��i�t��i�tw�� = ��i�tw��i�t��i�tw��

and

��i�t�Bi�t��� = �Bi�t��i�t��� ,

so that ����=0. Equation �4� becomes a linear relation for-
mally identical to Eq. �5�. When TRI does not hold, instead,
�����0 and the relation between ���� and A��� is no longer
linear. As we will see in Sec. IV A, this is an efficient tool to
check if a stationary state is invariant under time reversal
and, if not, to quantify TRI violations.

IV. NUMERICAL RESULTS

In this section, we present a numerical investigation of the
dynamical properties of the model and, in particular, of the
fluctuation-dissipation relation �30�. We chose unperturbed
transition rates of the Metropolis type for single spin flip on
site i

w���� → ����� = min�1,exp�− �i����H���� − H������ ,

�35�

which, as can be easily checked, obey Eq. �8�. Up down
symmetry implies that �i��� does not depend on the sign of
the Weiss field, �i���=��Hi�. In the following, we will con-
sider a system on a square lattice in two dimensions. In this
case, the only possible values of the local field are Hi��� /J
=0, ±2, ±4; the model is then fully defined by assigning the
three parameters ��0�, ��2J�, and ��4J�. Moreover, with the
Hamiltonian �7�, the transition rates �35� do not depend on
��0�. Then, at this level, the couple of inverse temperatures
��2J� and ��4J� is sufficient to characterize the model. How-
ever, ��0� becomes relevant if the system is perturbed by an
external magnetic field in order to measure response func-
tions. Actually, this quantity enters, through A�t , t�� and Bi,
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the expressions �26� and �29� of the response functions.
Then, response functions depend on ��0�, as already found
numerically in Ref. �13�.

The phase diagram of the IWDB was studied in Refs.
�7,8�. It was shown that in the plane of the parameters ��2�
and ��4�, one can identify two regions separated by a critical
line ��4�=�c���2��, as shown in Fig. 1. The critical line
starts at the inverse temperatures ��2�= 1

2 arctanh 1
2 , ��4�

=, corresponding to the Voter model, where the transition
occurs in the absence of bulk noise, passes through the On-
sager critical point with ��2�=��4�= 1

2 arcsinh�1� and ends at
��2�=, ��4��0.22, corresponding to the extreme model,
where the transition occurs in the absence of interfacial
noise. For ��4���c���2�� one has a high-temperature phase
similar to the paramagnetic phase of the KIM. Starting from
any initial state, the system quickly attains a stationary state
where the magnetization

m = ��i� �36�

vanishes. For ��4���c���2��, there is a low-temperature
phase similar to a ferromagnetic phase. Here there are
two possible dynamical situations, depending on whether the
system enters a state with broken symmetry, namely, with
m= ±MBS�0, or not. In the former case, a stationary state is
entered; in the latter there is a phase-ordering process and the
system ages. We will consider these cases separately in Secs.
IV A and IV B, where we will present the results of numeri-
cal simulations of a two-dimensional system on a square
lattice of size 10002, with J=1.

A. Stationary states

1. �„4…��c†�„2…‡

We have prepared the system in the stationary state at the
inverse temperatures ��0�=0.80, ��2�=0.44, and ��4�

=0.30, which correspond to the paramagnetic phase. This
state is quickly entered by the system by letting it evolve
from any initial condition. In the stationary state, we checked
that m=0 and that two-time quantities are functions of the
time difference � alone. In the following, time will be mea-
sured in Monte Carlo steps. C���, A���, and ���� are shown
in Fig. 2.

The behavior of C��� is analogous to that observed in the
KIM. Starting from C�0�= ��i

2�tw��=1, the correlation func-
tion exponentially decays to zero. This is due to the decor-
relation of the spin for large time differences lim�→C���
=lim�→��i�tw+���i�tw��= ������=m2=0. Here we have in-
troduced the simplified notation ���= ��i�t�� to indicate that
��i�t�� does not depend on time t nor on site i due to TTI and
space homogeneity. We will use this notation also in the
following, dropping time and/or space variables whenever
ensemble averages do not depend on them.

A��� behaves similarly. From the definition �27�, its equal
time value is the average inverse temperature of the bath,
A�0�= ���=0.46. For large times difference also, this corre-
lation function decays to zero, since lim�→A���=m����=0.
Note that C��� and A��� are proportional for large � but not
for small �. This fact will be relevant in the following, when
discussing the possibility to define a thermodynamic tem-
perature from the parametric plots �̂�C� and �̂�A� obtained
plotting ���� vs C��� or A���, respectively.

The behavior of ���� is also closely related to what is
known for the KIM. This quantity starts from ��0�=0 and
saturates exponentially to a constant value �. In the KIM,
this value is the equilibrium susceptibility, namely, the in-
verse temperature, �=�. One could conjecture that in the
IWBD this result can be generalized to �= ���. However, as
we will see shortly, this is not true due to lack of TRI. In
order to discuss this point let us consider, in Fig. 3, the para-
metric plot of �̂�A�.

For the largest values of A, a relation formally identical to
Eq. �5� is obeyed. Recalling Eq. �4�, this implies that the
term ���� is negligible. This, in turn, shows that TRI is sat-
isfied in this time domain. This is reminiscent of what hap-
pens in out of equilibrium systems in contact with a single

FIG. 1. �Color online� The phase diagram of the IWDB model,
where ti=tanh�2�i�. The three broken curves correspond, respec-
tively, V to the Voter model, I to KIM, and M to the extreme or
majority model. The two asterisks correspond to the two sets of
parameters used in simulations.

FIG. 2. �Color online� C���, A���, and ���� are plotted
against �.
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reservoir, where the linear FDT relation �5� is found on the
right-hand side of the �̂�A� parametric plot, despite the sys-
tem is not in equilibrium. Since in this case A�0�= ���, Eq.
�5� can be written as

�̂�A� = ��� − A . �37�

This shows that the average bath temperature ��� enters the
relation between ���� and A���, as a natural generalization of
what happens in the KIM where one has ��A�=�−A. This
behavior can be explained recalling that, in this sector of the
plot, namely, for ��0, the response is provided by the fastest
dynamical features. These are the microscopic flipping of
single spins that locally and instantaneously equilibrate at the
current inverse temperature �i���. Since the system is trans-
lationally invariant, by taking ensemble averages one gets a
sort of FDT with respect to the average bath temperature ���,
namely, Eq. �37�. As larger values of � are considered, cor-
responding to lower values of A���, slower dynamical fea-
tures are probed that cannot follow the variations of �i���. In
this sector, the contribution of ���� becomes relevant and the
parametric plot ��A� deviates from the straight line. Recall-
ing the discussion of Sec. III, �����0 is related to the lack
of TRI. These considerations then suggest that the parametric
plot can be used as a convenient tool to detect and quantify
TRI violations in nonequilibrium stationary states. Break-
down of TRI is also responsible for the saturation of ���� to
a value �� ���.

The calculations of Sec. III clearly show that A�t , tw� is
the correlation function naturally associated to ��t , tw�, rather
than the autocorrelation function C�t , tw�, which does not en-
ter the generalization of the fluctuation-dissipation theorem
�30�. Nevertheless, we also consider, in Fig. 4, the parametric
plot of ���� vs C���, since, by analogy with systems with
detailed balance, this relation is often considered in the lit-
erature �13�.

Also in this case, for the larger values of C, the curve

��C� obeys a linear relation ��C�= �̂�1−C�, with �̂=0.55.
Although this fact has suggested the interpretation �13� of

�̂−1 as a thermodynamic temperature, since C�t , tw� does not
enter the fluctuation-dissipation relation �30�, this reading is

unmotivated. Note, in fact, that �̂� ���. Indeed, one should

have �̂= ��� if C���	A��� in the regime considered, namely,
for small �. Instead, as discussed previously, this is not the

case. Actually, we have checked that �̂� ��� even when the
choice of ��0� proposed in �13� is made, both in the high-
and low-temperature phases.

For small values of C, the curve ��C� strongly deviates
from the straight line. The parametric plot ��C� can be com-
pared to that found in stationary states of other systems with-
out detailed balance and, in particular, in an exactly soluble
model of binary systems under shear flow �10�, where a simi-
lar pattern was found.

2. �„4…��c†�„2…‡

We have prepared the system in the stationary state at the
inverse temperatures ��0�=0.80, ��2�=0.68, and ��4�
=0.37, corresponding to the ferromagnetic phase. This state
is quickly entered by the system by letting it evolve from any
initial condition with a broken symmetry m�0. We consider
the stationary state where the magnetization attains the posi-
tive value m=MBS=0.83. Two time quantities, denoted by
CBS���, ABS���, and �BS��� are plotted in Fig. 5.

CBS��� behaves similarly to the KIM. It decays from
CBS�0�=1 to the large � value CBS��= ������=MBS

2 =0.69.
Analogously, ABS��� decays from ABS�0�= ���=0.45, to
ABS��= �������=MBS����=0.30. �BS��� grows from zero
up to the constant value �. If TRI were obeyed, from Eq.
�4� one should have �= ���−MBS����. Indeed, for the KIM,
this equation gives �=��1−MBS

2 �, which is, in fact, the
equilibrium susceptibility. However, TRI is violated in the
IWDB, as it is clear from the fact that the parametric plot of
�BS��� vs ABS���, shown in Fig. 6, is not a straight line.

Deviations from the straight line are due to the term ����
in Eq. �4�, which signals the breakdown of TRI, and makes
�BS��� saturate to a value �� ���−MBS����. Note, how-
ever, that also in this case for the largest values of ABS, the
linear relation �BS�ABS�= ���−ABS is obeyed, as in the para-

FIG. 3. �Color online� The parametric plot ��A�. In the inset, the
small A sector is magnified.

FIG. 4. �Color online� The parametric plot ��C�.
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magnetic phase, implying that TRI is satisfied in this time
domain and that the average temperature ��� can be ex-
tracted from this region of the plot, in analogy with the KIM.

In Fig. 7, the parametric plot of �BS��� versus CBS��� is
also shown. This plot is analogous to the one found in the
paramagnetic phase, and similar considerations can be made.

In particular, we find �BS�CBS�= �̂ · �1−CBS�, with �̂=0.54,
for the largest values of C. As already discussed in Sec.
IV A 1, there is no reason to interpret this quantity as an

inverse temperature, and again �̂� ���.
Let us also introduce the connected two-time quantities

that will be used in Sec. IV B. Using the general definition of
the connected correlation function D between two observ-
ables O and O�, D= �OO��− �O��O��, the connected two-
time quantities associated to CBS��� and ABS��� are

CBS��� = CBS��� − MBS
2 , �38�

ABS��� = ABS��� − MBS���� . �39�

B. Aging dynamics

In this section, we study the nonequilibrium process fol-
lowing a quench from an initial disordered state with m=0 to
the final inverse temperatures ��0�=0.80, ��2�=0.68, and
��4�=0.37. Note that these are the same temperatures of Sec.
IV A 2, corresponding to a point in the ordered phase. In this
case, one observes a phase-ordering process where domains
of two phases with m= ±MBS coarsen �8�. In the interior of
such domains, the system is found in the stationary state
studied in Sec. IV A. In analogy to what is known for the
KIM, and, more generally, in aging systems �11�, we expect
quantities such as the equal time correlation function

G�r,t� = ��i�t�� j�t�� , �40�

i and j being two sites whose distance is r, or two-time
correlation functions and response to take the additive struc-
ture �12�

G�r,t� = Gst�r� + Gag�r,t� , �41�

C�t,tw� = Cst��� + Cag�t,tw� , �42�

A�t,tw� = Ast��� + Aag�t,tw� , �43�

��t,tw� = �st��� + �ag�t,tw� . �44�

The presence of the stationary state in the bulk of the grow-
ing domains is the origin of the contributions Gst�r�, Cst���,
Ast���, and �st���, while the terms Gag�r , t�, Cag�t , tw�,
Aag�t , tw�, and �ag�t , tw� take into account the aging degrees
of freedom in the system.

In the KIM quenched to the final temperature �−1, Gst�r�
is the correlation function of the stationary state with broken
symmetry at the same temperature �−1, namely, the correla-
tion GBS�r�. We define Gst�r� in complete analogy for the
IWDB, GBS�r� being the quantity measured in the stationary
state at the same inverse temperatures. Gag�r , t� can then be
obtained by subtraction, by using Eq. �41�. In the scaling
regime, Gag�r , t� obeys

FIG. 5. �Color online� C���, A���, and ���� are plotted
against �.

FIG. 6. �Color online� The parametric plot �BS�ABS�. In the inset,
the small ABS sector is magnified.

FIG. 7. �Color online� The parametric plot �BS�CBS�.
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Gag�r,t� = MBS
2 g�x� , �45�

x= r
L�t� . This property will be tested below.
The typical size of domains can then be computed as the

half height width of Gag�r , t�. This quantity is shown in Fig.
8. After the initial transient, L�t� has a power-law behavior
L�t�� t1/z. We measure 1/z=0.50, as for the KIM.

Coming back to the scaling �45�, in order to check this
form we plot, in Fig. 9, Gag�r , t� /MBS

2 against x for different
values of t. According to Eq. �45� one should find data col-
lapse for different times. Actually, the collapse is good even
if worse than in the KIM, particularly for x�0. Note also
that the form of the scaling function g�x� is very similar to
that of the KIM.

Let us now discuss two-time quantities. Analogously to
what was discussed above for G�r , t�, in the KIM one has

Cst��� = CBS��� . �46�

We define Cst��� in complete analogy for the IWDB, and the
same is assumed for Ast���,

Ast��� = ABS��� . �47�

For the integrated autoresponse function, in systems with a
constant �, �st��� is the response produced in the bulk of
domains and is defined as the quantity related by Eq. �4� to
the stationary parts of the correlation functions. In this case
����=0, Eq. �4� is the FDT �5� and

�st��� = Ast�0� − Ast��� = ABS�0� − ABS��� = ABS�0� − ABS��� .

�48�

Clearly, since �st��� is related by FDT �5� to the correlation
function of the broken symmetry equilibrium state, it is the
integrated autoresponse function of that state. Then one has

�st��� = �BS��� . �49�

For the present model, in full analogy to the case with con-
stant �, we use Eq. �49� to define �st���. Namely, �st��� is the
quantity measured in the stationary state at the same inverse
temperatures in the previous section. Let us now turn to dis-
cuss the properties of the aging contributions in Eqs.
�42�–�44�. Recalling the behavior of CBS��� one concludes
that Cag�t , tw� decays from Cag�tw , tw�=MBS

2 to zero, as in the
KIM. In analogy to the KIM, we expect it to obey the scaling
form

Cag�t,tw� = hC�y� , �50�

where y= t / tw, with the power law hC�y��y−�/z for large y, �
being the Fisher-Huse exponent. Analogously, given the be-
havior of ABS��� discussed in the previous section, one con-
cludes that Aag�t , tw� decays from Aag�tw , tw�=MBS����
=0.30 to zero. We expect a scaling form

Aag�t,tw� = hA�y� , �51�

as for Cag�t , tw�. The response �ag�t , tw� is produced by the
interface degrees of freedom whose number goes to zero
during the ordering process. For this reason, in the d=2 KIM
this quantity after reaching a maximum for y�1 decays to
zero. A scaling behavior is obeyed, namely,

�ag�t,tw� = tw
−a�f�y� , �52�

with the power law f�y��y−a� for large y and a� consistent
with a�= 1

4 �17�. In order to check these scaling forms, we
have extracted the aging terms as

Cag�t,tw� = C�t,tw� − Cst��� = C�t,tw� − CBS��� , �53�

Aag�t,tw� = A�t,tw� − Ast��� = A�t,tw� − ABS��� , �54�

and

�ag�t,tw� = ��t,tw� − �st��� = ��t,tw� − �BS��� . �55�

According to Eq. �50�, curves Cag�t , tw� corresponding to
different values of tw should collapse when plotted against y.
This type of plot is shown in Fig. 10, which shows that the
data collapse is not very good for all times. This can be
associated to the presence of preasymptotic effects. How-
ever, the quality of the collapse gets better for the largest
values of tw and t. Indeed, while the two curves with the

FIG. 8. �Color online� The typical size L�t� of domains.

FIG. 9. �Color online� Gag�r , t� is plotted against x for different
times t generated from tn=int�exp�n /2�� with n ranging from 14 to
20. In the inset Gag�r , t� for the same values of t is plotted for the
KIM quenched at T=0. One observes the same small x behavior
g�x��1/x.
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smallest values of tw �tw=100,200� do not collapse at all,
there is a tendency to a better collapse as tw gets larger. For
the two largest values �tw=1600,3200� one has a nice col-
lapse from y�5 onward.

A similar situation is observed for the correlation
Aag�t , tw�, as shown in Fig. 11. Similar to what is found in
stationary states, we find that Cag�t , tw�	Aag�t , tw� is largest
for y.

According to Eq. �52�, the exponent a� can be extracted
as the slope of the double-logarithmic plot of �ag�t , tw�
against tw, by keeping y fixed. We do this in Fig. 12, for
different choices of y. We observe a good power-law behav-
ior, for every value of y. Best fit exponents are in the range
0.23–0.28, depending on y, suggesting that the same value
a�= 1

4 of the KIM is found here. Then, in order to check the
data collapse, in Fig. 13 we plot tw

a��ag�t , tw�, with a�= 1
4 ,

against y, for different tw. The collapse is, indeed, rather
good for the two largest values of tw, implying that Eq. �52�
with an exponent consistent with a�= 1

4 , as in the KIM, is
asymptotically obeyed. This result complements those of
Refs. �7,8�, where it was shown that the IWDB has the same
equilibrium critical exponent and the same persistence expo-
nent of the KIM. This strongly indicates that this two model

belongs to the same equilibrium and nonequilibrium univer-
sality class.

In Fig. 14, the parametric plot, of �̂�A� is shown. In order
to understand this plot, one has to consider separately the
short time separation regime �ST�, namely, the limit tw→
with � / tw�1, and the large time separation regime �LT�,
where tw→ with � / tw�1. In the ST, given the scalings
�50�–�52�, the aging parts of two time functions remain equal
to their equal time value. For Aag�t , tw�, one has Aag�t , tw�
=Aag�tw , tw�=MBS����. Then, from Eq. �43� one has
A�t , tw�=MBS����+Ast���=MBS����+ABS���. Recalling the
behavior of ABS�t , tw� one concludes that, in the ST, A�t , tw�
decays from ���=0.45 to MBS����=0.3. In this time domain,
one has �ag�t , tw�=0 and, hence, ��t , tw�=�st���=�BS���.
Therefore, on the right-hand side of the parametric plot of
Fig. 14, for A�0.3, one should find exactly the same curve
found in the stationary broken symmetry state, namely, Fig.
6. This curve is the broken line in Fig. 14. This implies that
for the largest values of A, let us say for A�0.4, Eqs. �5� and
�37� are obeyed, as discussed in Sec. IV A 2.

FIG. 10. �Color online� Cag�t , tw� is plotted against y.

FIG. 11. �Color online� Aag�t , tw� is plotted against y= t / tw.

FIG. 12. �Color online� �ag�t , tw� is plotted against tw for fixed
y= t / tw, and y=3,5 ,7 ,9 ,11,13,15,17,19 from top to bottom. The
dashed line is the power law tw

−�1/4�.

FIG. 13. �Color online� tw
1/4�ag�t , tw� is plotted against y= t / tw.

The dashed line is the power law y−�1/4�.
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The numerical simulations can only access finite tw, and
some deviations from the asymptotic curve are then ob-
served. Note, in particular, that the equal time value A�tw , tw�
has a weak time dependence. In this case there is a monoto-
nous decrease of this quantity. Recalling that A�tw , tw�
= ���tw��, this means that in the kinetic process the average
temperature is slightly increasing. This happens because in
the phase-ordering process the fraction of bulk spins, with
�i=��4�, grows in time. Since in this case ��4����2�
���0�, this corresponds to an increase of the average tem-
perature. Despite these finite time effects, however, the data
clearly show that the curves converge to the broken line in-
creasing tw.

On the left-hand side of the plot, the LT is probed. In this
regime, ABS�t , tw�=0 and A�t , tw�=Aag�t , tw� decays from
MBS���� to zero. On the other hand, �st��� has already
reached its asymptotic value �st���=� so that ��t , tw�=�

+�ag�t , tw�. According to the scaling form �52�, �ag�t , tw� van-
ishes in the large tw limit. Then, for tw= on the left-hand
side of Fig. 14, one should find the horizontal straight line
typical of phase-ordering systems. For finite values of tw,
�ag�t , tw� still contributes to the response and the curve over-
shoots the asymptotic value �. However, as shown in Fig.
14, the asymptotic curve is approached increasing tw.

Let us now consider the parametric plot of ��t , tw� versus
C�t , tw�, shown in Fig. 15. Repeating the same considerations
as for the previous figure, one concludes that on the right-
hand side of Fig. 15, the curves approach the curve of �BS���
against CBS��� of Sec. IV A 2, namely, Fig. 7, in the large tw

limit. We stress again that, as already discussed in Sec. IV A,

there is no reason to associate the quantity �̂−1 extracted
from this sector of the plot, to a thermodynamic temperature,
as claimed in �13�.

On the left-hand side of Fig. 15, our data are consistent
with a convergence to the flat line ��C�=�, typical of phase
ordering. Note, however, that the whole shape of the para-
metric plot is different from that of the KIM, due to the
different relation between the stationary parts of ��t , tw� and
C�t , tw�, which shows up in the large-C region. Moreover,
also in this case the plot is similar to what observed in binary
systems under shear �10�.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied a modified Ising model, the
IWDB, where the temperature entering the transition rates
depends on space and time through the system configuration
and detailed balance is violated. This model is known to
share many properties of the Ising model, including the
phase diagram, critical exponents �7�, and nonstationary dy-
namics �8�.

In systems with detailed balance a relation between the
integrated response function ��t , tw�, the autocorrelation
function C�t , tw� and the asymmetry ��t , tw�, a term related to
the possible lack of TRI, can be obtained under general as-
sumptions �9,14�. This fluctuation-dissipation relation ap-
plies also in nonstationary states, namely, out of equilibrium.

In this paper we have derived an analogous fluctuation-
dissipation relation for the IWDB. The result is similar to the
case with detailed balance, but the role played by C�t , tw� is
now played by the correlation A�t , tw� between the spins and
the time-dependent local inverse temperature. Since �i�tw�
enters the transition rates and is, therefore, correlated to the
spin configuration, A�t , tw� is not simply related to C�t , tw�. It
is therefore natural to consider the relation �̂�A� for which a
generalization of what is known in systems with detailed
balance seems to be possible, instead of the relation �̂�C�
whose meaning, as far as we can see, remains unclear.

In the stationary states of the model, which are the coun-
terparts of the Ising equilibrium states, the fluctuation-
dissipation relation �4� is formally similar to the FDT �5�,
with the important difference of a nonvanishing ��t , tw�, de-
termined by the violation of TRI. This term makes �̂�A� non-
linear. However, for small time differences, namely, for the
largest values of A, the asymmetry can be neglected and one
recovers a linear relation, as in equilibrium systems, with the
average inverse temperature ��� playing the role of � in
equilibrium systems.

After quenching the systems into the ferromagnetic phase,
a nonstationary process is observed, similar to the phase-
ordering kinetics of the KIM. We find that the response func-
tion exponent takes a value consistent with a�= 1

4 , as for the

FIG. 14. �Color online� The parametric plot ��A�. The dashed
line is the expected asymptotic behavior, for tw=.

FIG. 15. �Color online� The parametric plot ��C�. The dashed
line is the expected asymptotic behavior for tw=.
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KIM. This fact complements previous results �7,8� on the
universality between the two models, both in equilibrium and
out of equilibrium. The shape of plots �̂�A� and �̂�C� can
also be discussed in strict analogy to what is observed in the
KIM. In particular, one finds the flat horizontal line typical of
phase-ordering systems. Interestingly, the parametric plot
�̂�C� is similar to that of a soluble model of sheared binary
systems where detailed balance is also violated, suggesting

some qualitative similarity between these two model.
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